New Methods for Mining Sequential and Time Series Data
نویسنده
چکیده
Data mining is the process of extracting knowledge from large amounts of data. It covers a variety of techniques aimed at discovering diverse types of patterns on the basis of the requirements of the domain. These techniques include association rules mining, classification, cluster analysis and outlier detection. The availability of applications that produce massive amounts of spatial, spatio-temporal (ST) and time series data (TSD) is the rationale for developing specialized techniques to excavate such data. In spatial data mining, the spatial co-location rule problem is different from the association rule problem, since there is no natural notion of transactions in spatial datasets that are embedded in continuous geographic space. Therefore, we have proposed an efficient algorithm (GridClique) to mine interesting spatial co-location patterns (maximal cliques). These patterns are used as the raw transactions for an association rule mining technique to discover complex co-location rules. Our proposal includes certain types of complex relationships – especially negative relationships – in the patterns. The relationships can be obtained from only the maximal clique patterns, which have never been used until now. Our approach is applied on a well-known astronomy dataset obtained from the Sloan Digital Sky Survey (SDSS). ST data is continuously collected and made accessible in the public domain. We present an approach to mine and query large ST data with the aim of finding interesting patterns and understanding the underlying process of data generation. An important class of queries is based on the flock pattern. A flock is a large subset of objects moving
منابع مشابه
Forecasting Gold Price using Data Mining Techniques by Considering New Factors
Gold price forecast is of great importance. Many models were presented by researchers to forecast gold price. It seems that although different models could forecast gold price under different conditions, the new factors affecting gold price forecast have a significant importance and effect on the increase of forecast accuracy. In this paper, different factors were studied in comparison to the p...
متن کاملA New GIS based Application of Sequential Technique to Prospect Karstic Groundwater using Remotely Sensed and Geoelectrical Methods in Karstified Tepal Area, Shahrood, Iran
In this research, recognition of karstic water-bearing zones using the management of exploration data in Kal-Qorno valley, situated in the Tepal area of Shahrood, has been considered. For this purpose, the sequential exploration method was conducted using geological evidences and applying remote sensing and geoelectrical resistivity methods in two major phases including the regional and local s...
متن کاملLook Over on Mining Sequential Patterns in Evolving Data Stream
Data Stream are sequence of digitally encoded coherent signals ( Packets of data or data packets ) used to send or receive information that is in the process of being transmitted. It is a continuous, rapid and time-varying streams of data elements. A growing number of applications generate the streams of data. Such continuous generation of new elements in a data stream adds on additional constr...
متن کاملCBS: A New Classification Method by Using Sequential Patterns
Data classification is an important topic in data mining field due to the wide applications. A number of related methods have been proposed based on the wellknown learning models like decision tree or neural network. However, these kinds of classification methods may not perform well in mining time sequence datasets like time-series gene expression data. In this paper, we propose a new data min...
متن کاملA new approach to detect Life threatening cardiac arrhythmias using Sequential spectrum of Electrocardiogram signals
This study evaluates the discriminative power of sequential spectrum analysis of the short-term electrocardiogram (ECG) time series in separating normal and subjects with life threatening arrhythmias like, ventricular tachycardia/fibrillation (VT/VF). The raw ECG time series is transformed into a series of binary symbols and the binary occupancy or relative distribution of mono-sequences (i.e. ...
متن کاملA new approach to detect Life threatening cardiac arrhythmias using Sequential spectrum of Electrocardiogram signals
This study evaluates the discriminative power of sequential spectrum analysis of the short-term electrocardiogram (ECG) time series in separating normal and subjects with life threatening arrhythmias like, ventricular tachycardia/fibrillation (VT/VF). The raw ECG time series is transformed into a series of binary symbols and the binary occupancy or relative distribution of mono-sequences (i.e. ...
متن کامل